Spotlight on Young Researchers: Ramping up carbohydrates production

 

Carbs are all around us: a major constituent in food, they also play a role in many biological processes such as intercellular communication; they are in demand in the pharmaceutical industry, where they are currently used as anticoagulants and in skincare. With the goal of no longer having to rely solely on nature’s production of carbs, scientists have been working on ways to ramp up production. A case for chemistry!

Carbohydrates are the most abundant class of biomolecules. The production of carbohydrates used to be limited to natural sources, which did not only restrict the production to naturally occurring molecules, but also impeded rapid production in high amounts.

Researchers have been able to get around this issue by using organic synthesis – but: Progress was limited for a long time, due to the sheer complexity of the building blocks that carbohydrates are composed of: This complexity for example becomes apparent when comparing the building blocks to peptides. Three distinct amino acids can form six different tripeptides, while three monosaccharides (hexoses) can form a whopping 720 different trisaccharides.

The complexity of carbohydrates is based on the huge number of available monosaccharide building blocks (configuration), the positions each building block can bind do (connectivity) and the stereochemistry of the thereby formed glycosidic linkage (configuration).

Organic chemists were able to address this issue by using elaborate protecting group strategies, which allowed them to control the location of the formed glycosidic bond, known as regioselectivity.

“The remaining challenge is control over the stereoselectivity of a glycosidic bond, as it can have two different orientations. The selective formation of 1,2-trans-glycosidic linkages is straightforward by implementation of acyl protecting groups at the C2 position. The selective formation of 1,2-cis-glycosidic linkages is much more difficult, and to this day no gold-standard method is available,” explains chemist and PhD researcher Kim Greis.

The challenge facing scientists is fully understanding the mechanism of the glycosylation reaction. After many theories, it has only very recently been possible to characterise the reactive intermediate of this reaction, the glycosyl cation, that is believed to dictate the stereochemical outcome.

Kim is working on a unique, custom-built instrument to study glycosyl cations
Glycosyl cations are formed by electrospray ionisation and subsequent fragmentation of a glycosyl donor

As part of the research project, the team Kim works in generates glycosyl cations in the gas phase and trap them in an ion trap.

“Subsequently, we can embed the ions in helium nanodroplets and probe their vibrational modes using cryogenic infrared spectroscopy,” Kim explains.

“Thereby, we can generate a diagnostic fingerprint of each analysed species that can be directly connected to a structure with the aid of quantum chemical calculations. Using this methodology, we can determine the structure of glycosyl cations and thereby rationalize the experimentally observed stereoselectivity.”

“We were able to show that a remote acyl group located at the C4-position in glycosyl cations formed by galactose precursors interacts with the positively charged anomeric carbon, explaining the observed preference for forming 1,2-cis glycosidic linkages for that building block.”

For electrospray ionization self-made needles coated with palladium and platinum are used that need to be manually opened
Then, the needles are filled with a diluted solution of the precursor
The position of the needle relative to the orifice of the instrument needs to be exactly adjusted

Kim and fellow researchers want to use the knowledge gained from the experiments to fully understand and rationalise the stereochemical outcome of a glycosylation reaction, as well as determine the influence of further parameters.

“The knowledge will eventually help in designing efficient building blocks that exhibit the desired stereoselectivity without tedious empirical optimizations. Ultimately, the research will lead to a more efficient and environmentally sustainable production of pharmaceuticals and materials,” Kim concludes.

Kim Greis, a Luxembourg national, is a PhD candidate at the Freie Universität Berlin / Fritz-Haber-Institut der Max Planck Gesellschaft, supported by an AFR grant from the FNR.


MORE ABOUT KIM GREIS

On choosing the path of research

“My chemistry teachers in school triggered my excitement to understand the fundamental processes happening around us. For example, reactivity in chemical processes is not fully understood and tremendous knowledge can be gained from mass spectrometry-based techniques. Therefore, I chose the research group of Kevin Pagel, who offered a project in which I can address such questions.”

On the research logistics

“I am mainly working at Freie Universität Berlin and the Fritz Haber Institute. In the former we have the chemical knowledge, while in the second the expertise for instrumentation is extremely high. Furthermore, we are collaborating a lot with the Max Planck Institute of Colloids and Interfaces in Potsdam who have an extremely high expertise in carbohydrate chemistry.”

Kim Greis

RELATED PROGRAMMES

“They are normal human beings like you and me”

For each Lindau Nobel Laureate Meeting, the FNR runs a Call for promising young researchers with a connection to Luxembourg to attend. For the 2022 Lindau Meeting, dedicated to chemistry, Kim Greis, PhD candidate at Freie Universität Berlin/Fritz Haber Institute and Fulbright grantee at Yale University had this chance. We speak to Kim about the highlights of this rare experience! 

About Spotlight on Young Researchers

Spotlight on Young Researchers is an FNR initiative to highlight early career researchers across the world who have a connection to Luxembourg, with nearly 100 features published since 2016.

More in the series SPOTLIGHT ON YOUNG RESEARCHERS

  • All
  • Cancer research
  • Environmental & Earth Sciences
  • Humanities & Social Sciences
  • Information & Communication Technologies
  • Law, Economics & Finance
  • Life Sciences, Biology & Medicine
  • Materials, Physics & Engineering
  • Mathematics
  • Research meets industry
  • Sustainable resource mgmt
  • Women in science

Spotlight on Young Researchers: The challenge of getting autonomous systems to work together seamlessly

Spotlight on Young Researchers – revisited 5 years later: A post-PhD life in finance

Spotlight on Young Researchers: Improving how industrial plants are engineered

Spotlight on Young Researchers: Understanding the impact climate change has on crop-threatening insects

Spotlight on Young Researchers: Taking disruptions into account in life cycle/sustainability assessment

Spotlight on Young Researchers: Toward a risk assessment system for natural and biological systems

Spotlight on Young Researchers: Neighbourhood characteristics as determinants of health

Spotlight on Young Researchers: Shedding light on female writers in Luxembourg

Spotlight on Young Researchers: Dark patterns and the battle to free the web from manipulation

Spotlight on Young Researchers – revisited 5 years later: From drones to space robotics

Spotlight on Young Researchers: Environmental factors and their role in Parkinson’s Disease

Spotlight on Young Researchers: Harnessing the potential of the Internet of Things and satellites to make smart agriculture a reality

Spotlight on Young Researchers: Membranes for clean water

Spotlight on Young Researchers: Collecting individual and personal stories of the war generation in Luxembourg

Spotlight on Young Researchers: The hidden half of plants

Spotlight on Young Researchers: The human gut microbiome and the clues it holds

Spotlight on Young Researchers: Assessing the sustainability of Luxembourgish agriculture

Spotlight on Young Researchers: Nature’s shapes as mathematical challenges

Spotlight on Young Researchers: An algorithm to allocate satellite resources

Spotlight on Young Researchers: Dementia in neurodegeneration – defining the role of microglia, the brain’s immune cells

Spotlight on Young Researchers: Measuring the environmental impact of investment funds

Spotlight on Young Researchers: The historical relationship between the European Community and the Soviet Union

Overcoming antiquated ideas about history

Spotlight on Young Researchers: A fully automatic flood mapping algorithm

Spotlight on Young Researchers: Increasing the diversity of plant species used for vegetable oil

Spotlight on Young Researchers: Glioblastoma and the challenge of getting cancer drugs to reach the brain

Spotlight on Young Researchers: Identifying environmental pollutants

Spotlight on Young Researchers: Understanding drug resistance in skin cancer

Spotlight on Young Researchers: Towards predicting ageing-related diseases

Spotlight on Young Researchers: Are you what you eat?

Spotlight on Young Researchers: AI for ethical and legal debates

Spotlight on Young Researchers: How is scientific quality fostered by research collaboration?

Spotlight on Young Researchers: Turning up the heat on solar absorbers

Spotlight on Young Researchers: The role a gene plays in neurodegeneration and cancer

Spotlight on Young Researchers: Empowering critical digital humanities practice

Spotlight on Young Researchers: A gas sensor powered by natural light

Spotlight on Young Researchers: A hazelnut quality forecasting system

Spotlight on Young Researchers: Steve Dias Da Cruz

Spotlight on Young Researchers: Martin Řehoř

Spotlight on Young Researchers: Sumit Gautam

Spotlight on Young Researchers: Lucas Oesch

Spotlight on Young Researchers: Understanding how language manifests in the brain

Spotlight on Young Researchers: Hameeda Jagalur Basheer

Spotlight on Young Researchers: Mohammad Zare

Spotlight on Young Researchers: Yamila Mariel Omar

Spotlight on Young Researchers: Bella Tsachidou

Spotlight on Young Researchers: Antonio Ancora

Spotlight on Young Researchers: Paul Johanns

Spotlight on Young Researchers: Understanding brain mechanisms behind eating disorders

Spotlight on Young Researchers: Nathasia Mudiwa Muwanigwa

A system to support forest ecosystem decision-making

Spotlight on Young Researchers: Noémie Catherine Engel

Spotlight On Young Researchers: Henderika de Vries

Spotlight on Young Researchers: Remko Nijzink

Spotlight on Young Researchers: Anjali Sharma

Spotlight on Young Researchers: Pier Mario Lupinu

Spotlight on Young Researchers: Nanotechnology – a future big player in health

Spotlight on Young Researchers: Foni Raphaël Lebrun-Ricalens

Spotlight on Young Researchers: Christof Ferreira Torres

Spotlight on Young Researchers: Understanding our immune system

Spotlight on Young Researchers: Silvia Girardi

Spotlight on Young Researchers: Carole Lara Veiga de Sousa

Spotlight on Young Researchers: Adham Ayman Al-Sayyad

Spotlight on Young Researchers: Thomas Schaubroeck

Spotlight on Young Researchers: Sebastian Scheer

Spotlight on Young Researchers: Damien Brevers

Spotlight on Young Researchers: Nature does it best

Spotlight on Young Researchers: Jose-Luis Sanchez-Lopez

Spotlight on Young Researchers: Ernesto Gargiulo

Spotlight on Young Researchers: Thomas Elliot

Spotlight on Young Researchers: Maciej Piotr Chrzanowski

Spotlight on Young Researchers: Max Hilaire Wolter

Spotlight on Young Researchers: Dominique Santana

Spotlight on Young Researchers: Gilles Tossing

Spotlight on Young Researchers: László Sándor

Spotlight on Young Researchers: Ramona Pelich

Spotlight on Young Researchers: Maxime Brami

Spotlight on Young Researchers: Anna Monzel

Spotlight on Young Researchers: Konstantinos Papadopoulos

Spotlight on Young Researchers: Laurie Maldonado

Spotlight on Young Researchers: Antoun Al Absi

Spotlight on Young Researchers: Katharina Baum

Spotlight on Young Researchers: Michel Summer

Spotlight on Young Researchers: Amy Parrish

Spotlight on Young Researchers: German Castignani

Spotlight on Young Researchers: Eva Lagunas

Spotlight on Young Researchers: Michel Thill

Spotlight on Young Researchers: Maria Pires Pacheco

Spotlight on Young Researchers: Zhe Liu

Spotlight on Young Researchers: Xianqing Mao

Spotlight on Young Researchers: Hussein Rappel

Spotlight on Young Researchers: Taking language barriers out of the equation

Spotlight on Young Researchers: Gil Georges

Spotlight on Young Researchers: Isabel Z. Martínez

Spotlight on Young Researchers: Charles de Bourcy

Spotlight on Young Researchers: Pit Losch

Spotlight on Young Researchers: Svenja Bourone

Spotlight on Young Researchers: Kacy Greenhalgh

Spotlight on Young Researchers: Paul Hauseux

Spotlight on Young Researchers: Léon-Charles Tranchevent

Spotlight on Young Researchers: Multiple nationalities, one goal

Spotlight on Young Researchers: Jo Hoeser

Spotlight on Young Researchers: Anna Schleimer

Spotlight on Young Researchers: Paulo Carvalho

Spotlight on Young Researchers: Guillaume Nataf

Spotlight on Young Researchers: Alex Gansen

Spotlight on Young Researchers: Anna Scaini

Spotlight on Young Researchers – revisited 5 years later: From Luxembourg to Australia

Spotlight on Young Researchers: Pit Ullmann

Spotlight on Young Researchers: Nina Hentzen

Spotlight on Young Researchers: Dimitra Anastasiou

Spotlight on Young Researchers: Cyrille Thinnes

This site uses cookies. By continuing to use this site, you agree to the use of cookies for analytics purposes. Find out more in our Privacy Statement