Spotlight on Young Researchers: Alex Gansen

 

Alex Gansen first dabbled in research during his Masters studies in physics at the University of Fribourg (Switzerland), and then decided he wanted to take on the challenge of a PhD, so the Luxembourg national returned to his home country. Alex has just submitted his thesis at the end of the 4th year of his AFR PhD in computational electromagnetics at the Luxembourg Institute of Science and Technology (LIST) in collaboration with the College of Engineering in Swansea. He sees the close links between local industry and research in Luxembourg as a great advantage for the future of research in the Grand Duchy.

After his studies in physics with a focus on Soft Matter physics, Alex wanted to do more applied research. He even declined a PhD offer in Switzerland because the other PhD project he was offered at LIST was more appealing – so what’s this project about?

Computational electromagnetics or generally computational engineering is a relatively young discipline. The popularity significantly increased in the 80s due to decreasing prices of computers making the equipment affordable to more people. Computational electromagnetics revolves around modelling the interaction of electromagnetic fields with physical objects and the environment.

Simulation of Electromagnetic wave (light) crossing a dielectric sphere

“In my work, I mainly concentrate on a special configuration of electromagnetic fields, called electromagnetic waves which are nothing else than light in the broadest sense. It may be the visible light from the sun or invisible ‘light’ in the radio frequency regime used for communication or Wi-Fi. Maxwell’s equations form the mathematical basis of classical electromagnetism[1].”

“These equations can only be analytically solved for trivial interaction cases. For example, how light is scattered from a sphere. If we are, however, interested how radiation is reflected from complex structure like an aircraft these equations need to be solved numerically.”

As part of his PhD, Alex investigates how electromagnetic waves interact with matter: “My task is to develop better numerical algorithms for solving Maxwell’s equations faster and with lower memory requirements. Furthermore, I work on the simulation of so called metamaterials, these are artificial materials with properties that do not exist in nature. They lead to very challenging interactions with light.”

“Programming is like writing a book except when you miss a single comma on page 126 the whole book makes no sense”

So what does computational electromagnetics look like in practice on a daily basis? “Imagine I work on a specific problem. For example, how is the light reflected/transmitted after interacting with dielectric slab like a plate of glass? First, I have to derive the equations (starting from Maxwell’s equations) describing this interaction analytically (pen and paper). In the next step I think about how I can write them numerically (in a way a computer understands it). Then I start to program.

“Finally I test my program by comparing my results with some test cases that can be solved analytically. If both solutions agree my program works. Otherwise I have to find the error. This would be a perfect day. In reality it may take months to derive and especially implement such equations. There is a very nice quote with respect to this ’Programming is like writing a book except when you miss a single comma on page 126 the whole book makes no sense’.”

The main aim of Alex’s work is to improve the speed and reduce the memory requirements compared to other electromagnetic commercial solvers or methods. An example is computing the transmission of light through a material: This is vital for the development of objects such as antennas, because the radiation should be able to go through a given material. This can also be extended to things such as a wifi signal, which should not be blocked by a thin wooden door, just as the signal emitted by a smartphone should not be blocked by the cover of the phone.

Simulation of the transmission through an aircraft’s radome (nose of an aircraft)

Solving problems nobody has solved before

Alex says he had a great time time during his PhD, putting this down to his “amazing supervisors, and the fact that “I really like what I’m doing, tackling and solving problems nobody solved before, contributing to the technological development of society.”

As for what the future holds, Alex has not yet decided if he wants a long career in research, citing how difficult it is to get a permanent contract in research, and the impact this can have on the ability to settle down.

However, Alex sees a great deal of potential for research in Luxembourg and finds it a smart move to connect research with local industry in the way it is being done in the Grand Duchy:

“The link between research and local industrial partners is reinforced, leading to interesting and much more applied research projects and collaborations. Of course one of the reasons behind this is that 80% of the GDP comes from services, mainly banking. It is always very risky to depend on a single source of income especially nowadays with all the problems on the financial market.”

“Generally, Luxembourg has in my opinion a great potential because, in contrast to the rest of the world, the government is investing a lot of money into new infrastructure and research in general.”

Inspiring a new generation of researchers

Alex also took part in the 2017 edition of Chercheurs à l’école, which took place from 27 – 31 March. Chercheurs à l’école is an FNR initiative where researchers visit schools across the country to talk about life as a researcher.

Taking about the experience of taking part in Chercheurs à l’école, Alex says:

“It was the first time I participated in the researchers at school and I decided to go to the Lycée Ermesinde in Mersch, because this high school differs from its concept a bit from ‘normal’ schools by offering many activities to their students besides the normal classes and encouraging them to participate in. It was well organised and the staff was informed about our arrival. Furthermore all the necessary equipment was available and working.

The session was from 12:30 to 14:45, so the students participating sacrificed their lunch break for us. I shared the session with another researcher from the University of Luxembourg. All the attendants were polite, motivated and followed the different presentations carefully. It was for me a pleasure to present my work to them and talk about the everyday life of a researcher from my point of view.

I hope I could answer all their questions to their satisfaction and motivate some students to start a career as researcher, maybe even in the field of computational engineering. If I get the opportunity, I will definitely participate again and I can only encourage more researchers to do so to motivate as many students as possible.”


[1] Set of equations that underpin all electric, optical and radio technologies, such as power generation, electric motors, wireless communication, cameras, televisions, computers


Published on 6 April 2017

Alex Gansen
"A researcher also has a life outside the lab! : )"

SEE ALSO..

AFR PhD thesis ranked best in UK in Computational Mechanics domain

RELATED PROGRAMMES

About Spotlight on Young Researchers

Spotlight on Young Researchers is an FNR initiative to highlight early career researchers across the world who have a connection to Luxembourg. This article is the 5th in a series of around 20 articles, which will be published on a weekly basis. You can see more articles below as and when they are published.

Spotlight on Young Researchers: Nathasia Mudiwa Muwanigwa

Growing up in Botswana and Zimbabwe, Nathasia Mudiwa Muwanigwa did not see science as a career option. Fast forward a few years: Nathasia is studying Parkinson’s disease as part of her PhD at the LCSB at the University of Luxembourg, and has co-founded a STEM initiative that was featured in Forbes.

Spotlight on Young Researchers – revisited 5 years later: From drones to space robotics

When we wrote about Miguel Olivares Mendez in the 2017 edition of Spotlight on Young Researchers, the researcher was working on an FNR JUMP project, focussing on developing algorithms for autonomous drones. The robotics scientist has continued to build his research career in Luxembourg – 5 years later, Miguel is a Professor leading a research group with a focus on space robotics.

Spotlight on Young Researchers: Understanding how language manifests in the brain

At KU Leuven, Luxembourg national Jill Kries is part of a research team driven by understanding how cognition and brain structure develop over time in language-related disorders and how this knowledge can be applied in a clinical or educational setting. We take a closer look at the work of the young team.

Spotlight on Young Researchers: Paul Johanns

Paul Johanns works in a research field one does not read about every day: knots. As part of his AFR PhD at the École polytechnique fédérale de Lausanne (EPFL), the Luxembourg national combines high-precision model experiments, computation and theory to untangle the influence of topology on the mechanics of complex knots, particularly those used in surgical procedures.

Spotlight on Young Researchers: Understanding drug resistance in skin cancer

Melanoma is a rare type of skin cancer, but it is the deadliest type – and incidence is on the rise. Metastatic melanoma has seen a rapid emergence in drug resistance: After a few months, treatment stops working and tumours begin to grow again. Molecular biologists are working to understand why this happens.

Spotlight on Young Researchers: Gilles Tossing

Gilles Tossing’s fascination for the human brain – and why it sometimes fails – led him to the path of research. Now in the second year of his AFR PhD at Université de Montréal in Canada, the Luxembourg national investigates neurodegenerative diseases, with the aim of improving treatments for those affected.

Spotlight on Young Researchers: Multiple nationalities, one goal

What do a French, a Spanish, a Brazilian and an Algerian researcher have in common? In the case of Adeline Boileau, Antonio Salgado Somoza, Clarissa P. C. Gomes and Torkia Lalem, it’s that they are all early-career researchers who came to Luxembourg to join forces in the Cardiovascular Research Unit (CVRU) at the Luxembourg Institute of Health (LIH), which aims to identify new personalised strategies to diagnose and treat cardiovascular disease.

Spotlight on Young Researchers: Christof Ferreira Torres

Can we truly trust current blockchain technology to securely automate important processes in the financial sector? Christof Ferreira Torres wants to answer this question. In the framework of his Industrial Fellowship PhD with the University of Luxembourg and the bank Spuerkeess (BCEE), the Portuguese national works on the security of smart contracts and the detection of fraudulent transactions – because gaps in security can quickly mean high costs for thousands of people.

Spotlight on Young Researchers: Remko Nijzink

Climate change affects vegetation and water resources. In order to understand these changes, scientists use models – an abstract, mathematical representation of an ecological system. The challenge: Making accurate predictions under change, without ‘tuning’ models with data. We speak to Dutch national Remko Nijzink, Postdoc in the group of FNR ATTRACT Fellow Dr. Stan Schymanski at the Luxembourg Institute of Science and Technology (LIST), about his modelling work and the importance of an open science approach.

Spotlight on Young Researchers: Zhe Liu

Zhe Liu’s passion for research grew from a desire to find out how things work and why. Considering himself as a ‘Luxembourg-made Chinese researcher’, Zhe came to Luxembourg in 2011 for his AFR PhD, a project for which he later won an FNR Award for ‘Outstanding PhD Thesis’ in 2016.

This site uses cookies. By continuing to use this site, you agree to the use of cookies for analytics purposes. Find out more in our Privacy Statement