FNR ATTRACT Fellow in significant immunology discovery

 

Scientists at the Luxembourg Institute of Health (LIH) have discovered a previously unknown way in which our immune system activates its immune cells. The team, led by FNR ATTRACT Fellow Prof Dr Dirk Brenner, found that a molecule called ‘glutathione’ boosts the energy metabolism of a type of white blood cells known as T-cells, giving them more power to fight off e.g. viruses. The novel findings – which could lead to new treatments for cancer and autoimmune diseases – have just been published in ‘Immunity’, the world’s most prestigious immunology journal.

T-cells are a specific type of white blood cells, which play an important role in the immune system, as they attack virus-infected cells, foreign cells, and cancer cells.

“Our body has to keep our immune system in a carefully balanced equilibrium. If the body’s innate defences are overactive, then they turn against the body. This is what happens in autoimmune diseases like multiple sclerosis or arthritis, for example. If they are too weak, then infections cannot be controlled or body cells can proliferate uncontrolled and grow to form tumours, which can become life-threatening” – Dirk Brenner, FNR ATTRACT Fellow, Head of Experimental & Molecular Immunology Laboratory, LIH

The ‘normal’ state of immune cells, such as T-cells, is alert hibernation, meaning they are ready to jump into action, but their energy consumption is minimal. If pathogens (for example a virus), attach to the outer envelope of these cells, the T-cells wake up and boost their metabolism. This process creates larger amounts of ‘metabolic waste’, which can be toxic for the cells.

The higher the concentration of metabolic waste, the more antioxidants the T-cells have to produce to avoid being poisoned. These antioxidants, such as ‘glutathione’, serve as waste collectors and help to get rid of the metabolic waste, such as free radicals.

Prof Dr Brenner and his group were the first to ever take an in-depth look at what these antioxidants in T-cells actually do – what they found: The antioxidant glutathione does more than just collect metabolic waste: by boosting their energy metabolism, it actually helps the T-cells grow and divide, and so helps them spring into action to fight pathogens.

Mechanism of action of glutathione on metabolic reprogramming

“These fascinating results form a basis for a targeted intervening in the metabolism of immune cells and for developing a new generation of immunotherapies” – Mark Ollert, Director of Department of Infection & Immunity at LIH

How was the discovery made?

A gene known as ‘GclC’ is instrumental in order for T-cells to be able to fight off viruses. The gene encodes a protein that is vital in the production of the antioxidant glutathione. For their investigations, the scientists used genetically modified mice in which the GclC gene had been removed from the T-cellls, meaning they were unable to produce the waste-collecting metabolism-boosting glutathione:

“In these mice, we discovered that the control of viruses is impaired – mice that lack the GclC gene have an immunodeficiency. But by the same token, this also meant the mice could not develop any autoimmune disease such as multiple sclerosis.” – Dirk Brenner

During further testing by Prof Brenner’s team, they discovered why the mice were less able to control viruses: “The mice cannot produce any glutathione in their T-cells and so a number of other signalling events that directly boost metabolism and increase energy consumption are lacking.” The team established that as a result of the lack of the antioxidant glutathione, the T-cells do not become fully functional, but remain in their state of hibernation instead.

What’s next?

Prof Dirk Brenner sees his T-cells experiments as a prelude to more in-depth investigation of the energy balance of immune cells in general. A number of different autoimmune diseases are related to malfunctions in various subgroups of T-cells. Prof Brenner explains that the situation is similar in cancer:

“It is important to know why the immune cells that are actually supposed to fight cancer cells drop to a low metabolic state and in some cases even actively suppress an immune response against the tumour. Counteractive metabolism-stimulating measures could make the immune cells work more efficiently and fight off the cancer more efficiently” – Dirk Brenner

The study involved close collaboration with Prof Karsten Hiller (former FNR ATTRACT Fellow) from the University of Luxembourg, now Director of the Department of Bioinformatics and Biochemistry at the University of Braunschweig, as well as Prof Tak W. from the University of Toronto, Canada.

Publication

The team’s work is the ‘Featured Article’ of the current issue of ‘Immunity’, reflecting the significance of the work.

Link to publication: ‘Glutathione Primes T Cell Metabolism for Inflammation‘ (open access)


Published 19 April 2017

FNR ATTRACT Fellow Dirk Brenner led the LIH research team

SEE ALSO..

Introducing FNR ATTRACT Fellow Dirk Brenner

RELATED PROGRAMMES

RELATED NEWS

RELATED HIGHLIGHTS

FNR ATTRACT Fellows: Thomas Cauvin – Public History

Public history as a new participatory model for interpreting the past: Inspired by the evolution of digital participatory sciences, the 5-year project of FNR ATTRACT Fellow Thomas Cauvin will facilitate interactions between academics, cultural institutions, and the general public to contribute to a democratisation not only of access but also of the production of history.

HistorEsch: 25 objects tell 25 local stories

A temporary exhibition at the Escher Pop-Up-Store takes a different creative approach to storytelling: „HistorEsch: Escher Geschichten a 25 Objeten erzielt” features 25 local stories, told through objects of local residents rather than images. The exhibition is part of the project of FNR ATTRACT Fellow Dr Thomas Cauvin, who works in the field of public history.

FNR ATTRACT Fellows – the people behind the science: Emma Schymanski

Emma Schymanski is a chemist and environmental engineer, who embarked on her FNR ATTRACT Fellowship in 2018. Her husband Stan Schymanski is also an FNR ATTRACT Fellow, making them the first dual career couple to both benefit from this scheme. We spoke to Emma about her group’s detective work to find traces of chemicals in our environment and the associated challenges; her experiences as a woman in STEM; open science, and the experience of setting up your own research group for the first time.

A technique to perfectly screen magnetic materials

In many sciences, it is of fundamental importance to understand the internal structures of materials in detail and often to literally “shine through” them. For example, in chemistry and biology to understand crystal structures of proteins and thus their functions. Or in materials science, to understand – just one example of many – what makes magnets particularly powerful. Physicist Andreas Michels continues to develop methods that make it possible to understand material structures much better.

FNR ATTRACT Fellows – the people behind the science: Anupam Sengupta

Anupam Sengupta went from being an engineer in India to studying physics in Germany, before diving into biology in the US and Switzerland. Combining his expertise in these fields, the Indian national came to Luxembourg in 2018 with an FNR ATTRACT Fellowship to set up his research group at the University of Luxembourg as a tenure track Professor in Physics. We speak to the biophysicist about his journey and passion for uncovering the secrets of how the smallest of living organisms regulate our health and happiness, and get impacted by the changes in their environment.

Fighting autoimmunity and cancer: The nutritional key

A team of scientists at the Luxembourg Institute of Health (LIH), led by FNR ATTRACT Fellow Prof Dirk Brenner, have discovered a novel mechanism through which the immune system can control autoimmunity and cancer. The findings set a new direction for the development of future treatments of metabolic diseases. In a nod to the significance of the findings, the research graces the cover of the journal ‘Cell Metabolism’.

FNR ATTRACT Fellows – the people behind the science: Johannes Meiser

With his interdisciplinary research group, metabolism expert and analytical chemist Johannes Meiser from the Luxembourg Institute of Health (LIH) wants to uncover the role metabolism plays in the spread of cancer. We speak to the German national about his experience going from Postdoc to managing a research group; finding your niche; and the importance of a healthy work environment.

The immune system: A delicate balance

The immune system enables the body to fight off illness – but if it works too little, or too much, this can lead to anything from inflammation, to autoimmunity to cancer. At the Luxembourg Institute of Health (LIH), FNR ATTRACT Fellow Prof Dr Dirk Brenner works on understanding the functionality that underlies a healthy immune system.

FNR ATTRACT Fellows – the people behind the science: Stan Schymanski

Dr Stan Schymanski is passionate about nature and the outdoors, so much that he shaped his education and career around it. At the Luxembourg Institute of Science and Technology (LIST), the biologist studies various aspects of how plants interact with their surroundings. We spoke to the German national about dual science careers, understanding plants, and what it’s like to be a scientist studying the effects of a changing climate.

Researchers develop game to help children learn to count and contribute to science in the process

As part of a research project to better understand the human mind, a research group at the University of Luxembourg, led by FNR ATTRACT Fellow and experimental psychologist Prof Pedro Cardoso-Leite, has developed a game to help children learn to count. The game is a research tool in itself: the goal is to help children learn by understanding how they learn.

This site uses cookies. By continuing to use this site, you agree to the use of cookies for analytics purposes. Find out more in our Privacy Statement